New Probabilistic Network Models and Algorithms for Oncogenesis
نویسندگان
چکیده
Chromosomal aberrations in solid tumors appear in complex patterns. It is important to understand how these patterns develop, the dynamics of the process, the temporal or even causal order between aberrations, and the involved pathways. Here we present network models for chromosomal aberrations and algorithms for training models based on observed data. Our models are generative probabilistic models that can be used to study dynamical aspects of chromosomal evolution in cancer cells. They are well suited for a graphical representation that conveys the pathways found in a dataset. By allowing only pairwise dependencies and partition aberrations into modules, in which all aberrations are restricted to have the same dependencies, we reduce the number of parameters so that datasets sizes relevant to cancer applications can be handled. We apply our framework to a dataset of colorectal cancer tumor karyotypes. The obtained model explains the data significantly better than a model where independence between the aberrations is assumed. In fact, the obtained model performs very well with respect to several measures of goodness of fit and is, with respect to repetition of the training, more or less unique.
منابع مشابه
A mathematical model for sustainable probabilistic network design problem with construction scheduling considering social and environmental issues
Recent facility location allocation problems are engaged with social, environmental and many other aspects, besides cost objectives.Obtaining a sustainable solution for such problems requires development of new mathematical modeling and optimization algorithms. In this paper, an uncapacitated dynamic facility location-network design problem with random budget constraints is considered. Social i...
متن کاملRule-based joint fuzzy and probabilistic networks
One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...
متن کاملImproving the Performance of Machine Learning Algorithms for Heart Disease Diagnosis by Optimizing Data and Features
Heart is one of the most important members of the body, and heart disease is the major cause of death in the world and Iran. This is why the early/on time diagnosis is one of the significant basics for preventing and reducing deaths of this disease. So far, many studies have been done on heart disease with the aim of prediction, diagnosis, and treatment. However, most of them have been mostly f...
متن کاملVMLP neural network design using optimization algorithms to predict spider suspend (Case Study: Watershed Dam Kardeh)
One of the most important processes of erosion and sediment transport in streams is the river most complex engineering issues.this process special effects on water quality indices, action suburbs floor and destroyed much damage to the river and also into the development plans Lack of continuity sediment sampling and measurement of many existing stations. due to the low number of hydrometric s...
متن کاملDesigning of a New Transformer Ground Differential Relay Based on Probabilistic Neural Network
Low- impedance transformer ground differential relay is a part of power transformer protection system that is employed for detecting the internal earth faults. This is a fast and sensitive relay, but during some external faults and inrush current conditions, may be exposed to maloperation due to current transformer (CT) saturation. In this paper, a new intelligent transformer ground differentia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of computational biology : a journal of computational molecular cell biology
دوره 13 4 شماره
صفحات -
تاریخ انتشار 2006